New Millennium EO-1 Science Validation Team Meeting, November 2002

On-Orbit Radiometric and Spectral Calibration Characteristics of EO-1 Hyperion Derived with an Underflight of AVIRIS and In Situ Measurements at Salar de Arizaro, Argentina

Robert O. Green, Betina E. Pavri, Tom Chrien

Jet Propulsion Laboratory
California Institute of Technology
Overview

• Objective and Justification

• On-Orbit Calibration Approach

• Hyperion, AVIRIS, and In Situ Measurements

• Analysis and Results
 – Absolute Radiometric Calibration
 – Cross-track Radiometric Properties
 – Radiometric Precision
 – Absolute Spectral Calibration
 – Spectral Calibration Stability

• Summary and Conclusions

• Acknowledgements and Future?
Objective

• Assess the on-orbit radiometric and spectral calibration of EO-1 Hyperion

• If necessary, provide a basis for improved on-orbit radiometric and spectral calibration

• Extend and establish techniques that may be used with future imaging spectrometer missions
Justification

• Imaging spectroscopy data must be spectrally, radiometrically and spatially calibrated in order to:

 – Derive physical parameters from measured radiance

 – Compare data acquired from different regions and from different times

 – Compare and analyze imaging spectroscopy data with data acquired by other instruments

 – Compare and analyze data with results from computer models
Critical Calibration Lesson

- The only calibration that counts is that applied to the orbital or flight data that are being used to answer the science or application questions of interest.

- Considerable time and money can be spent calibrating a sensor in the laboratory only to find that the operational data are NOT calibrated. (This was a painful early AVIRIS lesson.)

- A strategy for on-orbit calibration assessment, monitoring and update is required
Hyperion On-orbit Calibration Approach

• Orchestrato a simultaneous AVIRIS underflight of Hyperion over a large uniform calibration target.

• Collect supporting in situ atmospheric and surface measurements at the target.

• Use these data to predict the upwelling radiance field at Hyperion.

• With the predicted incident radiance, assess the on-orbit radiometric and spectral characteristics of Hyperion.
Measurements: To support EO-1 Hyperion calibration and science validation, a 2001 AVIRIS campaign to Argentina was organized.
Two Primary Calibration Experiments

• Leoncito, 22 January 2001
 – Dry lakebed (silt composition) similar in surface and climate to the classic lakebeds of the western United States (Ivanpah, Railroad Valley, Lunar Lake, Rogers Dry Lake, etc.)
 – Logistically well situated near Mendoza

• Arizaro, 7 February 2001
 – High altitude dry lakebed (salt composition) with very different surface
 • Bright in the blue, extreme micro topography and BRDF
 – Logistically challenging
 • 6 hour paved plus 8 hour dirt road from City of Salta
 • no hotel, no gas, no restaurant
Leoncito, Team Argentina
Leoncito

• Ground measurements and AVIRIS underflight were successful

• Hyperion SWIR spectrometer was not functioning due to early phase instrument commissioning
Arizaro, Argentina
ARIZARO, Argentina

High altitude (~12,000ft) dry salt lakebed.

Surface: extremely rough, locally uniform, and bright.

Some years no rain at all!

It rained the day we arrived

Conditions were good for the experiment on the 7th of February 2001.
Hyperion Measurements Arizaro 010207

Hyperion Image

Calibration Target
Hyperion Radiance from the Calibration Target

Wavelength (nm)

Radiance (µW/cm²/nm/sr)

Hyperion

400 700 1000 1300 1600 1900 2200 2500
AVIRIS Image Arizaro, Argentina 010207

Calibration Target
AVIRIS Image Arizaro, Argentina 010207
AVIRIS Radiance from the Calibration Target with propagation to TOA

AVIRIS
Arizaro Calibration Target Measured Surface Reflectance

![Graph showing the reflectance of the Arizaro Calibration Target across different wavelengths. The graph includes lines for Average (1824), Standard Deviation, and Standard Deviation of the Mean. The wavelengths are labeled from 400 to 2500 nm. The graph indicates a slight variation in reflectance with some dips and peaks.](image-url)
Arizaro
Optical Depth Measurements
Arizaro, Argentina, 010207, 3700m
Ground Based Modeled Radiance at Hyperion

![Graph showing ground based modeled radiance at Hyperion with wavelength (nm) on the x-axis and radiance (µW/cm²/nm/sr) on the y-axis. The line is labeled MODTRAN.]
Hyperion, AVIRIS, and Ground Based Radiance for Arizaro Calibration Target

Radiance (µW/cm²/nm/sr)

Wavelength (nm)
Comparison of Laboratory Radiometric Standards

![Graph comparing radiometric standards](image)

- **Series1**
- **Series2**
- **Series3**
- **trw_radiance**
- **nedl(s=127)**
- **Series6**
Investigation of Hyperion Cross-Track Uniformity

Hyperion

AVIRIS

x Calibration Target
Hyperion Shows a Uniform Cross-Track Response in the VNIR and SWIR

![Graph showing Hyperion Cross-Track Sample (in Hyperion/AVIRIS) ratio for different wavelengths: 550 nm, 880 nm, 1060 nm, and 2150 nm. The graph indicates a uniform cross-track response across these wavelengths.](image-url)
Hyperion NEdL from Dark Signal

![Graph showing noise equivalent delta radiance (µW/cm²/nm/sr) versus wavelength (nm) for different Hyperion samples and AVIRIS.](image-url)
Hyperion SNR Estimate for Homogeneous Portion of Arizaro

![Graph showing Hyperion SNR Estimate over wavelength (nm).]
On-orbit Radiometric Assessment

- The Arizaro experiment indicates Hyperion was under reporting the total upwelling spectral radiance by ~10% in the VNIR and ~20% in the SWIR.

- A 10 percent value is consistent with uncertainties in the laboratory calibration data.

- In November of 2001 the Hyperion radiometric calibration was adjusted by 8% in the VNIR and 18% in the SWIR.

- Hyperion cross-track radiometric response is uniform.

- Hyperion precision is a fifth to a tenth of AVIRIS.
Hyperion on-orbit Spectral Calibration Assessment
On-Orbit Spectral Calibration Assessment
Arizaro, Argentina

![Graph showing radiance vs. wavelength with convolved radiance indicated]

Radiance (µW/cm²/nm/sr)

Wavelength (nm)

Convolved Radiance + 4units
Spectral Calibration Leverage from the Atmosphere

Convolved Radiance + 4 units
Arizaro Calibration Experiment

Shift 4.9 nm

-4.9 nm

Wavelength (nm)

Radiance (μW/cm²/nm/sr)

Hyperion
Model
Residual
Arizaro Calibration Experiment

Shift 4.9 nm

-4.9 nm

Radiance (uW/cm^2/nm/sr)

Wavelength (nm)
Arizaro Calibration Experiment

Sample 2 Shift 0.5 nm

Wavelength (nm)

Radiance (uW/cm²/nm/sr)

- Hyperion
- Model
- Residual
Arizaro Calibration Experiment

Shift -4.9 nm

Wavelength (nm)

Radiance (uW/cm²/nm/sr)

Hyperion
Model
Residual
Arizaro Calibration Experiment

Sample 2 Shift 2.3 nm

Plot showing the radiance in Watts per square centimeter per nanometer per steradian (W/cm²/nm/sr) as a function of wavelength in nanometers (nm). The graph compares Hyperion (red line), Model (green line), and Residual (blue line).
Arizaro Calibration Experiment

Cross-Track Sample (#)

Laboratory Derived

Arizaro 010207
2000 nm Carbon Dioxide
Hyperion On-Orbit Spectral Stability

- Hyperion data provided and analyzed Arizaro for
 - 7 February 2001
 - 10 February 2002
 - 30 March 2002
 - 25 April 2002
 - 1 May 2002
Spectral Calibration Stability VNIR 760nm Oxygen Band

Hyperion Channel 41

- Laboratory Derived
- Arizaro 010207
- Arizaro 020210
- Arizaro 020330
- Arizaro 020425
- Arizaro 020501

Cross-Track Sample (#)

Wavelength (nm)

0 32 64 96 128 160 192 224 256
Hyperion On-Orbit Spectral Assessment for Calibration Experiment at Arizaro, Argentina

• A spectral fitting approach with high resolution modeled spectra was successfully used to assess the Hyperion on-orbit spectral calibration.

• At 760 nm (VNIR) the cross-track spectral smile was confirmed and found shifted from 0.5 to 1.5 nm with respect to the laboratory determined values.

• At 1140 nm in the SWIR, a weak spectral calibration smile was derived, though the calibration was shifted from 2.5 to 3 nm with respect to the laboratory calibration.

• Analysis of a time series of Hyperion data from Arizaro showed largely stable spectral calibration ±0.5 nm in the VNIR and SWIR spectrometers with a possible 1.5 nm shift in the SWIR in May 2002.
Summary

• The on-orbit radiometric assessment of Hyperion with both AVIRIS and in situ measurements showed Hyperion to be low by ~10% in the VNIR and ~20% in the SWIR spectrometer. These results in conjunction with results from other radiometric calibration investigations were used to adjust the on-orbit radiometric calibration of Hyperion. (8% VNIR and 18% SWIR in November 2001)

• The cross-track radiometric response was found to be uniform at the 5% level.

• The on-orbit precision assess via NEdL was between a fifth to a tenth of AVIRIS.

• The on-orbit spectral calibration of Hyperion was assessed in the VNIR and SWIR spectrometers (O2, H2O, CO2). Shifts of 1 to 1.5 nm were found in the VNIR and from 2.5 to 3 nm in the SWIR compared to the laboratory calibration.

• The spectral calibration was found to be largely stable with evidence of a 1.5 nm shift in the SWIR in May 2002.
Conclusions

• Useful strategies for determination of the on-orbit radiometric and spectral calibration characteristics of Imaging Spectrometers were demonstrated.

• These results provide an improved on-orbit calibration of Hyperion data for research and application investigations.

• For future instrument builders

 • The focus must be Precision (SNR), Stability, Uniformity

 • These enable calibration

 • Spectral smile in pushbroom instruments is a function of design, alignment, and stability.

 • Hyperion was designed to be nearly smileless. This was achieved in the SWIR spectrometer.
Conclusions

• With a high precision, stable, uniform spaceborne imaging spectrometer the laboratory focus should be on spectral, radiometric, and spatial characterization.

• A rapid/rigorous on-orbit calibration activity should follow launch.

• It should be expected that analysis of the on-orbit calibration results in concert with the laboratory characterization will provide the best on-orbit calibration.

• Laboratory calibration/characterization is important, but not sufficient.

• The only calibration that counts is the on-orbit calibration.

• Dominant factors:
 • Precision (low F/#, large detector area)
 • Stability (Design, Thermal)
 • Uniformity (Advanced Offner-like Design)
Future? 2003 Imaging Spectrometer Design
350 to 2500 nm @10 nm
AVIRIS SNR
<2% smile
40 km Swath
30 m Spatial Resolution
0.1% stable OBC

F/2.8 Offner with dual blaze grating
On-Orbit Radiometric and Spectral Calibration Characteristics of EO-1 Hyperion Derived with an Underflight of AVIRIS and In Situ Measurements at Salar de Arizaro, Argentina

Robert O. Green, Betina E. Pavri and Thomas G. Chrien

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109
Thanks to Steve, the Hyperion Team, and all.